An Introduction to Riemann-Finsler Geometry (Graduate Texts in Mathematics)
David Dai-Wai Bao,Shiing-Shen Chern,Zhongmin Shen | 2000-03-17 00:00:00 | Springer | 431 | Mathematics
In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So yardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe? It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one. David Bao is Professor of Mathematics and of the Honors College, at the University of Houston. He obtained his Ph. D. from the University of California at Berkeley in 1983, with Jerry Marsden as his advisor. Before coming to Houston, he did two years of post-doctoral studies at the Institute for Advanced Study in Princeton, New Jersey. Besides differential geometry, he is passionately curious about the ways cats and goldfish think. Shiing-Shen Chern is Professor Emeritus of Mathematics at the University of California at Berkeley, and Director Emeritus of the Mathematical Sciences Research Institute. He is also Distinguished Visiting Professor Emeritus at the University of Houston. Chern received his D. Sc. in 1936, as a student of W. Blaschke. He carried out his post-doctoral studies under E. Cartan. Chern has garnered a good number of distinctions to date. These include the Chauvenet Prize (1970), National Medal of Science (1975), the Humboldt Award (1982), the Steele Prize (1983), and the Wolf Foundation Prize (1983-84). Zhongmin Shen is Associate Professor of Mathematics at Indiana University Purdue University Indianapolis (IUPUI). He earned his Ph. D. from the State University of New York at Stony Brook in 1990 under Detlef Gromoll. He spent 1990-91 at the Mathematical Sciences Research Institute at Berkeley, and 1991-93 as a Hildebrandt Assistant Professor at the University of Michigan at Ann Arbor.
Reviews
The authors claim to turn the subject of Finsler geometry with this book
into a more teachable one and to have a candid style of writing.
This is definitly true for the first 50 pages, where the concepts of
Finsler geometry are very well explained and the exercises
are manageable and perfectly interrelated with the text.
Then the Chern connection and the curvature tensor of Finsler geometry
drop out of the heaven without any explanation of the ideas leading to these
constructions. So one has to derive them alone. In doing so older
texts on Finsler geometry like the Grundlehren text of Rund are more
helpful than this volume.
But the book was apparently prepared with great care. The layout must be called
beautyful and it really facilitates reading this book. Many references
to the literature and classical papers of the subject are included. So beginners,
which want to get a first aquaintance in Finsler geometry, find at least some help.
Download this book!
Free Ebooks Download
No comments:
Post a Comment